Acceleration is the <u>rate</u> at which <u>Veloci</u>	ty_changes.
Newton's 2nd law of Motion is the a reate	r the force, the greater the acceleration.
The greater the mass, the great	ter the force needed for same acceleration.
This law can be written as an equation, write that	equation here. F= M×A
	ip between MASS and ACCELERATION Remain the same
If the MASS is increased, then the ACCELERATION	
If the MASS is decreased, then the ACCELERATION	will increase sproportional
Problem:	
What is the effect of Mass on accel	eration of the ball? $F = M \times \alpha$
Hypothesis:	F= M X ()
If mass increases, then ac	certeration will decrease
objects with more mass	require more force to accelerate.
Materials:	
You will be given 1 straw per table. One person is	responsible for using the straw.
ou be given 3 different sized balls.	1 11 11
Use your timers on your cell phones to measure t	he time be as accurate as possible - take this seriously.
Use ruler or meter stick to measure the distance.	this seriously.
Masking tape Scale	
Scale	
Procedures:	table
	g line and a finish line on your desk. This will be your course.
· · · · · · · · · · · · · · · · · · ·	pe of ball in the space provided in the data table. Write the
mass of the ball in the space provided u	
Measure the distance of your race track table.	using a ruler or meter stick. Write this number in your data
	ne straw, moving the ball from the starting point to the finish
	Only use the air from the straw to move the ball. Use your
timer to record the time it takes to com	piete the race.
5. Repeat step 4 for trials 2 and 3.6. Complete steps 4 and 5 for the remaini	ng halls
7. Find the average acceleration for each	
/elocity = Distance	Acceleration = Final Speed – Initial Speed
Time	Time
)	,,,,,

Name:___

Period:_____ #:____

Rcceleration (cm/s²)

Period: Name:_ Distance Velocity Velocity Type of Mass travelled Time (s) - final - initial Acceleration (cm/s/s) ball (g) (cm) (cm/s)(cm/s)Trial 1 Trial2 Trial 3 Average Trial 1 Trial2 Trial 3 Average Trial 1 Trial2 Sa F1005 Trial 3 Average

Measuring Acceleration of Balls with Different Masses (cm/s2)

Graph your results. Make sure you Title your graph and label each axis. The Independent Variable goes on the X Axis. The Dependent Variable goes on the Y Axis. You can use a bar graph.

Mass/Type of Ball